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Calculations of pH for complex mixtures of acids, 
bases and ampholytes 

D A V I D  C U T L E R  

Department of Pharmacy, University of Sydney, Sydney 2006, Auslralia 

A general method for calculating the pH of complex mixtures of acids, bases and ampholytes 
is derived. Application of the method is illustrated with examples. 

Calculations of pH in complex mixtures are generally 
carried out with the aid of simplifying assumptions 
which may require a considerable knowledge of the 
behaviour of the system. Often this intuitive 
approach leads to negligible errors but there are 
other cases, difficult to recognize, in which signifi- 
cant errors are involved. A general method for pH 
calculation has been presented by Ventura & Ando 
(1980). Their derivation and tabular method of 
evaluation are complex. They also describe a 
numerical procedure suitable for computer 
implementation but this requires calculation of 
polynomial coefficients, which involves much effort 
by the user of this method. A FORTRAN program 
for pH calculations is given by Martin et al(l983) but 
the program deals only with sample cases. 

This article describes an alternative procedure for 
calculating the pH of complex solutions, such as 
buffer solutions containing a drug, without the usual 
simplifying assumptions. A FORTRAN program to 
implement the scheme is available from the author 
on request. All that is required of the user of this 
program is the basic information on pK,s, the 
composition of the solution and the nature of the 
components. 

charge on the most highly protonated species of 
ampholyte i is mi (including the sign; mi is negative 
when the charge is negative), the superscripts [mi], 
[mi - 11, ..., [mi - nil represent the charges and ni, 
ni - 1, ... represents the number of exchangeable 
hydrogens for the different species which make up 
ampholyte i. 

The special case of a polybasic acid follows on 
setting mi = 0, giving species HniAi, Hni-lAi-, . . . , 
Aini-. For a polyacidic base, mi = ni and the species 
are HniAini+, Hni.-lAi(ni-l)+, . . . , Ai. The treatment 
of a general ampholyte therefore covers these cases, 
following suitable assignment of mi and ni. 

For a given ampholyte species HjAi[mi-ni+Jl, once 
mi and ni are specified the charge mi - ni + j is 
completely determined by j. In the following the 
notation is simplified by omitting the charge, writing 
this species as HjAi. 

In terms of concentrations the ionization constants 
for the equilibria in scheme (1) are defined as 

From equation ( 2 )  we obtain the following 
Ki,j = [Hj-lAi] [H+]/[HjAi] ( 2 )  

[HAiI = [Ail [H+l/Ki.l 
[HAil = [Ail [H+I2/Ki.lKi,2 

and 
General description of acids, bases and ampholytes 
All components of the system, including the solvent, 
are represented as ampholytes, with acids and bases 

[H~Ail = [Ail [H+lJ'Pi.j for j = 1, 2 ,  ...) ni(3) 
where ~- 

PI,] = Kl.lKl.2, . " >  Kl,, (4) interpreted as special cases. An ampholyte is taken 
as a collection of species in mutual equilibrium 
through the exchange of protons, as in the following 
general scheme. 

Let C, be the total (molar) concentration of 
ampholyte i; that is, 

C, = , %  [H,Ai] 
] = o  

Hni-,Ai[mi-ll Kn1-1 = Hni-2Ailmi-21 + H+ (1) Using equation (3), this can be written 
ni 

KI C, = [A,] (1 + 1 = 1  Z [H+]J/~, , ,)  (6) 
HAl[mi-ni+l] = A [mi-nil + H+ 

The subscript i refers to a particular ampholyte (i = To the notation, let 
1, 2, ..., N; N IS the number of ampholytes). The a,,] = [H,A,l/C, (7) 
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denote the fraction of ampholyte i in the form of the 
species HjAi, at equilibrium. Using equations (3) 
and (6) this becomes 

ni 

j = 1  
+ J/{P,,;(l + Z [H+]J/Pi.;)} (8) ai,j = [H 1' 

We now apply the electroneutrality condition. The 
net charge on all species present, including the 
counterions (not specifically referred to above), 
must be zero. We consider first the counterions. Let 
Ci,j be the analytical (molar) concentration of species 
j of ampholyte i (i.e. HjAi). This is the concentration 
corresponding to the amount of HjAi added initially 
(either as a neutral species, or as a salt with a 
counterion). Note that [HjAi] refers to the same 
species as Ci.;, but [HjAi] refers to the equilibrium 
concentration, and Ci,; to  the initial concentration 
immediately following mixing of the components. 
The species HjAi has charge mi - ni + j, and is 
associated with counterions of charge ni - mi - j. 
Expressing charge in molar units, the total charge 
associated with the counterions of species HjAi is 

(ni - mi - j)Ci,; 
Allowing for all species of all ampholytes, the total 
counterion charge is 

N ni 

i = l  j = O  
Z , Z  (ni - mi - j )  Ci,; (9) 

If some of the ampholytes are added as salts with 
other ampholytes this calculation of the counterion 
charge remains valid since any error due to counting 
non-existent positive counterions is matched by the 
same error, of opposite sign, arising from counting 
non-existent negative counterions associated with 
the other ampholyte of the salt. 

The equilibrium concentration of species HjAi is 
[HjAi], each molecule of HjAi has charge (mi - ni + 
j), so the total charge (in molar units) arising from 
species HjAi, i = 1, 2, ..., n, j = 0, 1, ... ni is 

N ni 

I: % (mi - ni + j) [HjAi] 
i = l j = O  

N ni . . ... 
= Z , Z  (mi - ni + j )  ai.jCi (10) 

i = l  j = O  

The electroneutrality condition requires that the 
counterion charge, given by expression (9), be equal 
in magnitude and opposite in sign to the charge at 
equilibrium on the ampholyte species. The sum of 
expression (9) and the right side of equation (10) 
must be zero: 

N ni 

In this equation, the number of ampholytes 
includes the solvent (unless it is inert under the 
prevailing conditions), which must be specified 
explicitly (Ki,j for each equilibrium, and the analy- 
tical concentrations of all species). If water is the 
solvent, the use of equation (11) requires it to  be 
regarded as an ampholyte comprising species H30+,  
H 2 0  and OH- (i.e. ni = 2 ,  mi = 1) and dissociation 
constants are needed for the equilibria between 
these species. 

When strong acids or  bases are present equation 
(11) requires dissociation constants for each strong 
acid or base. While this is straightforward in prin- 
ciple there are often difficulties in obtaining reliable 
values for dissociation constants for strong acids or 
bases. When there is no doubt that a strong acid or 
base is completely dissociated under the prevailing 
conditions the following considerations lead to an 
alternative to  equation (11) which is simpler in 
practice. 

In equation ( l l ) ,  with water included as a parti- 
cular ampholyte, a single term corresponds to  water, 
which is independent of the other terms. Using the 
subscript w for water, taking nw = 2 and mw = 1, the 
term for water in equation (1 1) becomes 

C, is the concentration of water. Cw.O is the initial 
concentration of [OH-], comprising that arising 
from water and also that arising from a completely 
dissociated strong base (if one is present). Thus, 

where Bo is the concentration of OH- arising from 
completely dissociated strong bases and [OH-], is 
that arising from water. The term aW.,Cw is [OH-], 
the equilibrium concentration of OH-. Similarly, 

c w . 0  - aw.ocw - c w . 2  + aw.2Cw 

CW.0 = Bo + [OH-lo 

c w , 2  = A0 + [H+Io 
where An is the concentration of H+ arising from 
completely dissociated acids and [H+lO is that arising 
from water. The equilibrium concentration of H+, 
[H+], is aw,2Cw. Thus the term arising from water 
and all completely dissociated acids and bases is 

Bo + [OH-], - [OH-] - A, - [H+]o + [H+] 
In practical situations there is a negligible error in 
taking 

K, = [H+] [OH-] 
to be a constant. Thus, 

and 
[OH-] = Kw/[H+] 

[OH-], = K,/[H+], 
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Equation (1 1) becomes 
N' ni 

i = l  J = O  
Z Z (ni - mi - j) (Ci,, - ai,,Ci) 

+ [H+] -K,/[H+] - [H+]o 
+ K,/[H+]O - Ao + Bo = 0 (12) 

In equation (12) N' is the number of ampholytes 
excluding water and any strong acids or bases which 
are present. 

Example 1. Calculate pH of a solution of 0 . 0 9 ~  
NaHC03 and 0.01 M Na2C03. 

Apart from water there is a single ampholyte. The 
most protonated form is H2C03 which has zero 
charge (ml = 0) and two replaceable protons (n l  = 
2). The ionization constants used were those sup- 
plied by Ventura & Ando (1980). The input is 
summarized in Table 1. 

Table 1 .  Data for example 1 .  

Calculation of p H 
Calculation of the pH of a mixture of known 
components can be carried out using equation (ll), 
for the general case, or equation (12) if the solvent is 
water. In both cases, there is only one unknown, 
[H+]. Note that ai,j is a function of [H+], given by 
equation (8). The required value of [H+] is therefore 
the solution of equation (11) or (12). Ventura & 
Ando (1980) provide a tabular approach, and also 
refer to a procedure for obtaining an exact solution. 
The exact approach involves rearranging (their 
equivalent of) equation (12) to form a polynomial. 
When the coefficients of the polynomial form are 
found, standard methods of finding the roots of a 
general polynomial are applied. The approach adop- 
ted here is much simpler. There is no advantage in 
converting to a polynomial form. Instead, a 
numerical solution can be found by elementary 
methods, based directly on equations (11) or (12). 
This is straightforward because the pH in all practical 
situations can be assigned to a definite interval on the 
pH scale (say, 0 to 14 in the absence of any other 
information). The bisection (or midpoint) method 
(Conte & de Boor 1981) is a relatively inefficient 
method for general purposes, but is ideal in this 
application. Depending on the initial range, this 
method can be guaranteed to provide a solution with 
no more than about 12 iterations to a precision of 
0-01 pH units. 

As with the method of Ventura & Ando (1980) 
there is no ionic strength correction, which may limit 
the accuracy of the method, If ionic strength effects 
are thought to be significant, the ionization constants 
used in the calculation should be appropriate for the 
final ionic strength of the solution. 

Examples 
The examples which follow were those described by 
Ventura & Ando (1980) to illustrate their method. 
The results reported here were obtained using a 
FORTRAN program which is available on request 
from the author. 

Ampholyte Species C , ,  (M) Equilibria K,* 

- 

* E = xlopower 

The program provided the value 9.37, the value 
reported by Ventura & Ando (1980). 

Example 2 .  The pH is required of a solution 
containing 0.0216 M citric acid, 0.0216 M NaH2P04, 
0.0216 M barbitone, 0.0216 M boric acid and 0.0491 M 
NaOH. 

There are four ampholytes excluding water and 
one strong base. We will illustrate the use of the 
method treating water as an ampholyte (i.e. using 
equation (11)) with NaOH a completely dissociated 
strong base. The input is listed in Table 2. The 
calculated pH was 5.306. Ventura & Ando (1980) 
calculated the value 5.30, which was the experimen- 
tally measured value. 

Table 2. Data for example 2. 
~ ~~ ~~~ ~ 

Ampholyte Species C,,, (M) Equilibria K. 
Citrate A3- 0 A3- + H+ = HA'- 4.0E-6 HA2- 0 H A 2 - + H + = H 2 A -  1.gE-5 2;- :.0216 H2A- + H+ = H3A 8.4E-4 

Phosphate A'- 0 A3- + H+ = HA'- 4.8E-13 :$I :,0216 HA2- + H+ = H2A- 6.20E-8 
7 . E - 3  H2A- + H+ = HJA H3A 0 

Barbitone A- HA 0 o,0216 A - + H +  = H A  3.&E-8 

Borate A- 0 0.0216 A- + Hi = H a  5.E-10 

1.8E-16 

Ha 

HA H2AC 55 1,E-7 H A + H + = H z A +  55 
Water A- 0.0491* A- + Ht = H A  

* Arising from NaOH. 
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